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MATH 127 - Final Exam - Review Sheet
Fall 2021 - Chapters 13, 14, 15, 16, and Sections 17.1-17.3

Final Exam: Monday 12/13, 4:30-7 PM

The following is a list of important concepts from the sections which were not covered by Midterm Exam
1 or 2. This is not a complete list of the material that you should know for the course, but it is a good
indication of what will be emphasized on the exam. A thorough understanding of all of the following
concepts will help you perform well on the exam. Some places to find problems on these topics are the
following: in the book, in the slides, in the homework, on quizzes, and WebAssign.

Vector Fields and Line Integrals: (Sections 16.1, 16.2, 16.3, 17.1)

A vector field in Rn, denoted ~F, is a function that assigns to each point (x1, x2, ..., xn) in Rn a vector
~F(x1, x2, ..., xn) in Rn. The vector field ~F is smooth if each of its components is continuously differen-
tiable.

The divergence of a vector field ~F = 〈F1, F2, F3〉 is defined as

div(~F) = ∇ · ~F =
∂F1

∂x
+
∂F2

∂y
+
∂F3

∂z

div(~F) < 0div(~F) > 0 div(~F) > 0 div(~F) < 0

The curl of a vector field ~F = 〈F1, F2, F3〉 is defined as

curl(~F) = ∇× ~F =

〈
∂F3

∂y
− ∂F2

∂z
,
∂F1

∂z
− ∂F3

∂x
,
∂F2

∂x
− ∂F1

∂y

〉

x

z

y
curl(~F) x

z

y

curl(~F)

Given a differentiable function f(x, y, z), its gradient is the vector field

~F = ∇f =

〈
∂f

∂x
,
∂f

∂y
,
∂f

∂z

〉
.
∇f(a, b, c) is orthogonal to the level surface of

f(x, y, z) at (a, b, c).
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dy

z

∇f(a, b, c)∇f(a, b, c)∇f(a, b, c)∇f(a, b, c)∇f(a, b, c)∇f(a, b, c)∇f(a, b, c)∇f(a, b, c)∇f(a, b, c)∇f(a, b, c)∇f(a, b, c)∇f(a, b, c)∇f(a, b, c)∇f(a, b, c)∇f(a, b, c)∇f(a, b, c)∇f(a, b, c)∇f(a, b, c)∇f(a, b, c)∇f(a, b, c)∇f(a, b, c)∇f(a, b, c)∇f(a, b, c)∇f(a, b, c)∇f(a, b, c)∇f(a, b, c)∇f(a, b, c)∇f(a, b, c)∇f(a, b, c)∇f(a, b, c)∇f(a, b, c)∇f(a, b, c)∇f(a, b, c)∇f(a, b, c)∇f(a, b, c)∇f(a, b, c)∇f(a, b, c)∇f(a, b, c)∇f(a, b, c)∇f(a, b, c)∇f(a, b, c)∇f(a, b, c)∇f(a, b, c)∇f(a, b, c)∇f(a, b, c)∇f(a, b, c)∇f(a, b, c)∇f(a, b, c)∇f(a, b, c)∇f(a, b, c)∇f(a, b, c)∇f(a, b, c)∇f(a, b, c)∇f(a, b, c)∇f(a, b, c)∇f(a, b, c)∇f(a, b, c)∇f(a, b, c)∇f(a, b, c)∇f(a, b, c)∇f(a, b, c)

Point: (a, b, c)

∇f(d, e, f)∇f(d, e, f)∇f(d, e, f)∇f(d, e, f)∇f(d, e, f)∇f(d, e, f)∇f(d, e, f)∇f(d, e, f)∇f(d, e, f)∇f(d, e, f)∇f(d, e, f)∇f(d, e, f)∇f(d, e, f)∇f(d, e, f)∇f(d, e, f)∇f(d, e, f)∇f(d, e, f)∇f(d, e, f)∇f(d, e, f)∇f(d, e, f)∇f(d, e, f)∇f(d, e, f)∇f(d, e, f)∇f(d, e, f)∇f(d, e, f)∇f(d, e, f)∇f(d, e, f)∇f(d, e, f)∇f(d, e, f)∇f(d, e, f)∇f(d, e, f)∇f(d, e, f)∇f(d, e, f)∇f(d, e, f)∇f(d, e, f)∇f(d, e, f)∇f(d, e, f)

Point: (d, e, f)

x

A vector field that is the gradient of some scalar function f is called a conservative vector field, and
the function f is called a scalar potential function for ~F.

If the vector field ~F = 〈F1, F2〉 is conservative then
∂F1

∂y
=
∂F2

∂x
.

If the vector field ~F = 〈F1, F2, F3〉 is conservative then curl
(
~F
)

= ~0 and

∂F1

∂y
=
∂F2

∂x

∂F1

∂z
=
∂F3

∂x

∂F2

∂z
=
∂F3

∂y

Finding the scalar potential: If curl(~F) = ~0 over a simply-connected domain, then ~F is conservative.

To find the scalar potential, compare

ˆ
F1 dx,

ˆ
F2 dy and

ˆ
F3 dz. Use common terms only once. Make

sure that if a term is not explicit in any of the integrals, they are consider a constant with respect to that
variable.

Scalar Line Integrals: The net area under the surface z = f(x, y) above the curve C in the xy-plane is

the line integral

ˆ
C
f(x, y) ds. If C is parametrized by ~r (t) for q ≤ t ≤ b, then

ˆ
C
f ds =

ˆ b

a

f
(
~r(t)

)
‖~r ′(t)‖ dt.

x

y

z

C (x, y)

f(x, y)

Vector Line Integrals: The vector line integral of a vector field ~F over an oriented curve C is the scalar
line integral of the tangential component of ~F.

If ~F = 〈P,Q,R〉 and C is parameterized by ~r(t), then ˆ
C

~F · d~r =

ˆ
C

~F · ~T ds

=

ˆ b

a

~F
(
~r (t)

)
·~r ′(t) dt

=

ˆ
P dx+Qdy +Rdz2
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y

P = ~r(a)

Q = ~r(b)~T

~T

~F
~F · ~T is the length of

the projection of ~F

along ~T

The work done in moving an object from ~r (a) to ~r (b) along C is

ˆ
C

~F · d~r.

C is piecewise-smooth if C is the union of a finite number of smooth curves C1, C2, . . . , Cn.

ˆ
C
f ds =

ˆ
C1
f ds+

ˆ
C2
f ds+ . . .+

ˆ
Cn
f ds

ˆ
C

~F · d~r =

ˆ
C1

~F · d~r +

ˆ
C2

~F · d~r + . . .+

ˆ
Cn

~F · d~r

x

y

z

C1

C2

C3

Exercises:

1. f(x, y) = x2 − y is a potential function for ~F . Find and sketch ~F .

~F (x, y) = 〈2x,−1〉

3
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x

y

-3

-3

-2

-2

-1

-1

0

0

1

1

2

2

3

3

OR

x

y

-3

-3

-2

-2

-1

-1

0

0

1

1

2

2

3

3

2. f(x, y) =
√
x2 + y2 is a potential function for ~F . Find and sketch ~F .

~F (x, y) =

〈
x√

x2 + y2
,

y√
x2 + y2

〉

4
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x

y

-3

-3

-2

-2

-1

-1

0
0

1

1

2

2

3

3

3. Calculate the curl and divergence of the vector fields:

(A) ~F (x, y, z) = 〈xyz, 0,−x2y〉

div
(
~F
)

=
∂

∂x
(xyz) +

∂

∂y
(0) +

∂

∂z
(−x2y) = yz

curl
(
~F
)

=

〈
∂

∂y
(−x2y)− ∂

∂z
(0),

∂

∂z
(xyz)− ∂

∂x
(−x2y),

∂

∂x
(0)− ∂

∂y
(xyz)

〉
= 〈−x2, 3xy,−xz〉

(B) ~F (x, y, z) = 〈0, cos(xz),− sin(xy)〉

div
(
~F
)

= 0 curl
(
~F
)

= 〈−x cos(xy) + x sin(xz), y sin(xy),−z sin(xz)〉

(C) ∇ (exyz)

∇ (exyz) = 〈yzexyz, xzexyz, xyexyz〉 ~F is conservative, so curl
(
~F
)

= ~0

div
(
~F
)

= (y2z2 + x2z2 + x2y2) exyz

4. f(x, y, z) = xyz and C is parametrized ~r (t) = 〈2 sin(t), t,−2 cos(t)〉 for [0, π]. Evaluate

ˆ
C
f ds.

5
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Since |~r ′(t)| = |〈2 cos(t), 1, 2 sin(t)〉| =
√

5,

ˆ
C
f(x, y, z) ds =

ˆ π

0

(2 sin(t))(t)(−2 cos(t))
√

5 dt = −4
√

5

ˆ π

0

t sin(t) cos(t) dt =
√

5π

5. A thin wire is bent into the shape of a semicircle x2 + y2 = 4, x ≥ 0. If the linear density is a
constant k, find the mass of the wire.

Parametrize the wire as ~r (t) = 〈2 cos(t), 2 sin(t)〉 on
[
−π

2
,
π

2

]
.

The density of the wire at (x, y) is ρ(x, y) = k. To find the mass, we take the scalar linear
integral.

Since |~r ′(t)| = |〈−2 sin(t), 2 cos(t)〉| = 2,

Mass of Wire:

ˆ
C
ρ(x, y) ds =

ˆ π
2

−π
2

2k dt = 2kπ.

6. Evaluate the vector line integral of ~F (x, y, z) = 〈x+ y, y − z, z2〉 over ~r (t) = 〈t2, t3, t2〉 on [0, 1].

ˆ
C

~F · d~r =

ˆ 1

0

〈
t2 + t3, t3 − t2, t4

〉
·
〈
2t, 3t2, 2t

〉
dt

=

ˆ 1

0

2t(t2 + t3) + 3t2(t3 − t2) + 2t(t4) dy

=

ˆ 1

0

5t5 − t4 + 2t3 dt =
17

15

7. Calculate the work done by the vector field ~F (x, y, z) = 〈−y sin(z), x sin(z), xy cos(z)〉 in moving a
particle around the circle cut from x2 + y2 + z2 = 9 by z = −1, clockwise as viewed from above.

The curve cut from the sphere by the plane satisfies the equations x2 + y2 = 8, z = −1.
Parametrized with clockwise orientation as

~r (t) =
〈√

8 sin(t),
√

8 cos(t),−1
〉

~r ′(t) =
〈√

8 cos(t),−
√

8 sin(t), 0
〉

t ∈ [0, 2π]

6
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ˆ
C

~F · d~r

=

ˆ 2π

0

〈√
8 cos(t) sin(1),−

√
8 sin(t) sin(1), 8 cos(t) sin(t) cos(1)

〉
·
〈√

8 cos(t),−
√

8 sin(t), 0
〉
dt

=

ˆ 2π

0

8 sin(1) dt = 16π sin(1)

8. Integrate f(x, y, z) = x2 + y − z over the following paths:

(A) The path consisting of line segments from (0, 0, 0) to (1, 0, 0), then to (1, 1, 0), and finally to
(1, 1, 1).

(B) The path consisting of line segments from (0, 0, 0) to (1, 1, 0) and then to (1, 1, 1).

x

y

z

C1

C2

C3(0, 0, 0)

(1, 0, 0) (1, 1, 0)

(1, 1, 1)

(A)
x

y

z

C1

C2(0, 0, 0)

(1, 1, 0)

(1, 1, 1)

(B)

(A) The curve consists of three paths:

~r1(t) = t 〈1, 0, 0〉+ (1− t) 〈0, 0, 0〉 = 〈t, 0, 0〉 |~r1 ′| = 1 t ∈ [0, 1]

~r2(t) = t 〈1, 1, 0〉+ (1− t) 〈1, 0, 0〉 = 〈1, t, 0〉 |~r2 ′| = 1 t ∈ [0, 1]

~r3(t) = t 〈1, 1, 1〉+ (1− t) 〈1, 1, 0〉 = 〈1, 1, t〉 |~r3 ′| = 1 t ∈ [0, 1]

ˆ
C
f ds =

ˆ 1

0

f(~r1) |~r1 ′| dt+

ˆ 1

0

f(~r2) |~r2 ′| dt+

ˆ 1

0

f(~r3) |~r3 ′| dt

=

ˆ 1

0

t2 dt+

ˆ 1

0

t+ 1 dt+

ˆ 1

0

2− t dt = 10/3

7



K
U

M
at

he
m

at
ics

- J.
Bre

nn
an

&
J.

N
ik

ne
ja

d

(B) The curve consists of two paths:

~r1(t) = t 〈1, 1, 0〉+ (1− t) 〈0, 0, 0〉 = 〈t, t, 0〉 |~r1 ′| =
√

2 t ∈ [0, 1]

~r2(t) = t 〈1, 1, 1〉+ (1− t) 〈1, 1, 0〉 = 〈1, 1, t〉 |~r2 ′| = 1 t ∈ [0, 1]

ˆ
C
f ds =

ˆ 1

0

f(~r1) |~r1 ′| dt+

ˆ 1

0

f(~r2) |~r2 ′| dt

=

ˆ 1

0

(t2 + t)
√

2 dt+

ˆ 1

0

2− t dt =
5
√

2 + 9

6

9. Evaluate

ˆ
C
(x + yz) dx + 2x dy + (xyz) dz where C consists of the line segments C1 : from (1, 0, 1)

to (2, 3, 1) and C2 : from (2, 3, 1) to (2, 5, 2).

x
y

z

C1 C2(1, 0, 1) (2, 3, 1)

(2, 5, 2)

C = C1 + C2 where C1 is parametrized by ~r1 and C2 by ~r2.

~r1(t) = (1− t) 〈1, 0, 1〉+ t 〈2, 3, 1〉 = 〈t+ 1, 3t, 1〉 t ∈ [0, 1] ~r ′(t) = 〈1, 3, 0〉

~r2(t) = (1− t) 〈2, 3, 1〉+ t 〈2, 5, 2〉 = 〈2, 2t+ 3, t+ 1〉 t ∈ [0, 1] ~r ′(t) = 〈0, 2, 1〉

The integral is a vector line integral of ~F (x, y, z) = 〈x+ yz, 2x, xyz〉 over C.
ˆ
C

~F · d~r =

ˆ
C1

~F · d~r +

ˆ
C2

~F · d~r

=

ˆ 1

0

〈
4t+ 1, 2t+ 2, 3t2 + 3t

〉
· 〈1, 3, 0〉 dt+

ˆ 1

0

〈
2t2 + 5t+ 5, 4, 4t2 + 10t+ 6

〉
· 〈0, 2, 1〉 dt

=

ˆ 1

0

10t+ 7 dt+

ˆ 1

0

4t2 + 10t+ 14 dt =
97

3

8
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Fundamental Theorems of Line Integrals: (Sections 16.3, 17.1)

Fundamental Theorem for Conservative Vector Fields: Assume that ~F = ∇f on a domain D.
For any curve C from P to Q in D,

ˆ
C

~F · d~r = f(Q)− f(P ).

y

z

P

Level surface of the
scalar potential at P .

Level surface of the
scalar potential at Q.

Q

x

A curve is simple if it does not intersect itself. It is closed if it begins and ends at the same point. A
parameterization of a simple, closed curve is positively oriented if the point moves counterclockwise.

Green’s Theorem: If D is a domain whose boundary ∂D is a simple, closed curve with positive
orientation, then

ˆ
∂D

~F · d~r =

ˆ
∂D
P dx+Qdy =

¨
D

(
∂Q

∂x
− ∂P

∂y

)
dA =

¨
D

curl(~F)z dA

The boundary of a surface S is denoted ∂S. When S is oriented, the induced boundary orientation is the
direction which keeps the surface on the left if you were to walk along the boundary with your feet on
the curve and your head pointed in the direction of the orientation of the surface.

C

D

Regions With Holes: For a connected region with holes, the boundary consists of two or more closed
curves. Every part of the boundary must be oriented to keep the region on the left.

Outside boundary: counterclockwise. Inside boundary: clockwise.

9
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∂D

=
D1

∂D1

D2

∂D2

Exercises:

1. Find the work done by ∇ ((x+ y)2) counterclockwise around the circle x2 + y2 = 4 from (2, 0) to
(0,−2).

Parametrize the curve by ~r(t) = 〈2 cos(t), 2 sin(t)〉 on [0, 3π/2]. ~r ′(t) = 〈−2 sin(t), 2 cos(t)〉.

~F (x, y) = ∇ ((x+ y)2) = 〈2x+ 2y, 2x+ 2y〉.
ˆ
C

~F · d~r =

ˆ 3π/2

0

〈2 cos(t) + 2 sin(t), 2 cos(t) + 2 sin(t)〉 · 〈−2 sin(t), 2 cos(t)〉 dt

=

ˆ 3π/2

0

−4 sin2(t) + 4 cos2(t) dt = 0

Alternatively:

Notice ~F(x, y) = ∇((x+ y)2) is conservative and its scalar potential is f(x, y) = (x+ y)2.
Now by fundamental theorem of conservative vector integrals,

ˆ
C
∇((x+ y)2) · d~r = f(2, 0)− f(0,−2) = 0

2. Consider the vector field ~F (x, y, z) = 〈cos(z),−1,−x sin(z)〉.

(A) Is ~F is conservative on R3?

∇× ~F =

∣∣∣∣∣∣∣∣∣∣∣∣

~i ~j ~k

∂

∂x

∂

∂y

∂

∂z

cos(z) −1 −x sin(z)

∣∣∣∣∣∣∣∣∣∣∣∣
= 〈0, 0, 0〉 and the domain of ~F is all R3.

(B) Find the scalar potential function f for the gradient field ~F .

10
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• f(x, y, z) =

ˆ
cos(z) dx = x cos(z) + C1(y, z).

• f(x, y, z) =

ˆ
−1 dy = −y + C2(x, z).

• f(x, y, z) =

ˆ
−x sin(z) dz = x cos(z) + C3(x, y).

f(x, y, z) = x cos(z)− y + C

(C) Evaluate

ˆ
C

~F · d~r along C given by ~r(t) = 〈et, e2t, t〉 from point (1, 1, 0) to (eπ, e2π, π).

ˆ
C

~F · d~r = f(eπ, e2π, π)− f(1, 1, 0) = eπ cos(π)− e2π −
(

(1) cos(0)− 1

)
= −eπ − e2π

3. Calculate the work done by the vector field ~F (x, y, z) =
〈

1,−
√
z/y,−

√
y/z
〉

in moving a particle

from (1, 1, 1) to (10, 3, 3) along a path which stays within the first octant.

∇× ~F =

∣∣∣∣∣∣∣∣∣∣∣∣

i j k

∂

∂x

∂

∂y

∂

∂z

1 −
√
z/y −

√
y/z

∣∣∣∣∣∣∣∣∣∣∣∣
= ~0

Since curl
(
~F
)

= ~0 on R3 − {(0, y, 0) | y ∈ R3} − {(0, 0, z) | z ∈ R3}, the first octant is entirely

in the domain of ~F. Therefore, ~F is conservative within the first octant.

The function f(x, y, z) = x − 2
√
yz is a potential function for ~F . Using the Fundamental

Theorem of Conservative Vector Fields,

ˆ (10,3,3)

(1,1,1)

~F · d~r = f(10, 3, 3)− f(1, 1, 1) = 5

11
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4. A particle starts at the point (−2, 0), moves along the x-axis to (2, 0), and the along the semicircle

to y =
√

4− x2 to the starting point. How much work was done by the vector field ~F (x, y) =
〈x, x3 + 3xy2〉 in moving the particle along the path.

x

y

C

(2, 0)(−2, 0)

D

.

The curve moves counterclockwise about the
semicircle. Using Green’s Theorem,

‰
∂D

~F · d~r =

¨
D

curl
(
~F
)
z
dA

=

¨
D

∂

∂x
(x3 + 3xy2)− ∂

∂y
(x) dA

=

¨
D

3(x2 + y2) dA

= 12π

5. Let C be the simply closed curve defined by

C : ~r(t) = 〈−2t(t− 1)(t− 2), t(t− 1)(t+ 1)〉 for 0 ≤ t ≤ 1.

D C

-0.2-0.4-0.6

-0.1

-0.2

-0.3

~r(0.25)

~r(0.5)

(A) Find ~r(0), ~r(0.25) and ~r(0.5). Then confirm that the parameterization transverses the curve
in counterclockwise orientation.

~r(0) (0, 0)
~r(0.25) ' (−0.65625,−0.23438)
~r(0.5) ' (−0.75,−0.375)

As t grows, the points on the curve move clockwise.

(B) For ~F (x, y) = 〈0, x〉, compute

‰
∂D

~F · d~r.

=

˛
C
x dy =

ˆ 1

0

x
dy

dt
dt

=

ˆ 1

0

−2(t3 − 3t2 + 2t)(3t2 − 1) dt

=

ˆ 1

0

−6t5 + 18t4 − 10t3 − 6t2 + 4t dt =
1

10
.
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The value computed is clockwise so

‰
∂D

~F · d~r =
1

10
.

(C) For ~F (x, y) = 〈0, x〉, find curl(~F); use the value to simplify

¨
D

curlz(~F) dA.

curl(~F) = ~k so

¨
D

curlz(~F) dA =

¨
D

1 dA = area (D)

(D) Use Green’s Theorem to find the area entrapped in the simple closed curve C.

According to part (B) and (C), the area is
1

10

Note: The region D is simple, but it is difficult to impossible to express it in a form suitable

for an iterated integral. Instead, use Green’s theorem and the fact that curlz

(
~F
)

= 1. To

find the area, we need to compute

¨
D

curlz

(
~F
)
dA =

‰
C

~F · d~r

6. Find

ˆ
C1

~F · d~r if curl
(
~F
)
z

= 6 in the region defined by the 4 curves and

ˆ
C2

~F · d~r = 3

ˆ
C3

~F · d~r = 7

ˆ
C4

~F · d~r = π

3

−3

1−1

5

5

C1

C2

C3

C4

13
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The boundary of D has a positive orientation represented as C1 + C2 − C3 − C4. By Green’s
Theorem, ‰

C1

~F · d~r +

ˆ
C2

~F · d~r −
ˆ
C3

~F · d~r −
ˆ
C4

~F · d~r =

¨
D

curl
(
~F
)
z
dA

Therefore,

‰
C1

~F · d~r =

¨
D

6 dA− 3 + 7 + π = 6(Area(D)) + (4 + π) = 4 + π + 6(23π − 4) = 139π − 20

14
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Surface Integrals: (Sections 16.4 and 16.5)

A curve is smooth if it has a parametrization ~r(t) where ~r ′ is continuous. A parametrization is regular if
~r ′ is nonzero.

u

v

a

b

(a, b)

~G(u, v)

x

y

z
Curve ~G(a, v)

Curve ~G(u, b)

~G(a, b)

A surface is smooth if it has a parametrization ~G(u, v) where ~Gu × ~Gv is continuous. A parametrization

is regular if ~Gu × ~Gv is nonzero.

Let f be a scalar function and ~F a vector field.

Scalar Line Integral along a smooth curve C with a regular parametrization ~r (t) on [a, b].

ˆ
C
f ds =

ˆ b

a

f(~r (t)) ‖~r ′(t)‖ dt

If f = 1 then

ˆ
C
f ds is the arclength of C.

Vector Line Integral, or work done by a vector field, along an oriented curve C:
ˆ
C

~F · d~r =

ˆ b

a

~F (~r (t)) ·~r ′(t) dt

Scalar Surface Integral over a smooth surface S with a regular parametrization ~G(u, v) on R:

¨
S
f dS =

¨
R
f(~G(u, v)) ‖~Gu × ~Gv‖ dA

If f = 1 then

¨
S
f dS is the surface area of S.

Vector Surface Integral or flux of a vector field ~F through an oriented surface S:

¨
S

~F · d~S =

¨
R

~F
(
~G(u, v)

)
·
(
~Gu × ~Gv

)
dA

Fundamental Theorems of Surface Integrals: (Sections 17.2-
17.3)

Stokes’ Theorem: Let S be an oriented surface with smooth, simple closed boundary curves. Let ~F be
a vector field whose components have continuous partial derivatives.

ˆ
∂S

~F · d~r =

¨
S

curl(~F) · d~S

15
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The Divergence Theorem: Let S be a closed surface that encloses a solid T in R3. Assume that T
is a piecewise smooth and is oriented by normal vectors pointing to the outside of T . Let ~F be a vector
field whose domain contains T .

¨
S

~F · d~S =

˚
T

div
(
~F
)
dV

div(~F) < 0div(~F) > 0 div(~F) > 0 div(~F) < 0

Exercises:

1. Compute the flux of ~F (x, y, z) = 〈3, 4, 5〉 through each of the rectangular regions below, assuming
each is oriented as shown. Draw an arrow on the boundary of each surface, D, so that the flux

computed is equal to

‰
∂D

~A · d~r for ~A = 〈4z, 5x, 3y〉. (Note that: curl( ~A) = ~F ).

x

y

z
(0, 0, 5)

(5, 0, 5)

(5, 5, 5)

(0, 5, 5)

16
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The plane can be parametrized as

~G (u, v) = 〈0, 0, 5〉+ u 〈5, 0, 0〉+ v 〈0, 5, 0〉 for u ∈ [0, 1] and v ∈ [0, 1].

Since ~Gu × ~Gv = 〈0, 0, 25〉,¨
S

~F · d~S =

ˆ 1

0

ˆ 1

0

〈3, 4, 5〉 · 〈0, 0, 25〉 du dv

= 125 .
Alternatively, the following parametrization can be used:

~H(u, v) = 〈0, 0, 5〉+ u 〈5, 0, 0〉+ v 〈5, 5, 0〉, 0 ≤ v ≤ 1 and −v ≤ u ≤ 1− v.

2. (A) Parameterize the following rectangular region using the formula: ~G(u, v) =
−→
OA+

−→
AB u+

−−→
AD v,

for 0 ≤ u, v ≤ 1.

The plane can be parameterized as
~G (u, v) = 〈1, 0, 0〉+ u 〈0, 1, 0〉+ v 〈−1, 0, 2〉 for u ∈ [0, 1] and v ∈ [0, 1].

~Gu × ~Gv = 〈2, 0, 1〉

(B) Compute ~Gu, ~Gv and ~N = ~Gu × ~Gv for Part (A). Is ~N oriented in the same direction as ~n or
in the opposite direction?

x
y

z

S
A(1, 0, 0) B(1, 1, 0)

C(0, 1, 2)D(0, 0, 2)

~n

~Gu = 〈0, 1, 0〉 and ~Gv = 〈−1, 0, 2〉.
~Gu × ~Gv = 〈2, 0, 1〉

(C) Let ~F(x, y, z) = 〈3x, 4y, 5〉. Parameterize ~F on the surface and compute integral

ˆ 1

0

ˆ 1

0

~F(~G(u, v)) · ~N du dv.

~F(~G(u, v)) = 〈3(1− 1v), 4v, 5〉¨
S

~F · d~S =

ˆ 1

0

ˆ 1

0

〈3(1− 1v), 4u, 5〉 · 〈2, 0, 1〉 du dv = 8 .

17
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3. Find the flux of ~F (x, y, z) = 〈z, x, y〉 through the cap cut from the paraboloid y2 + z2 = 3x by the
plane x = 1, oriented as shown.

y

z

(0, 0, 0)
(1, 0, 0)

S2 S1

y2 + z2 = 3x

x ~n

Solution 1: Solve directly. Parameterize the surface on r ∈ [0,
√

3], θ ∈ [0, 2π]:

~G (θ, r) =

〈
r2

3
, r cos(θ), r sin(θ)

〉
~Gθ × ~Gr =

〈
−r, 2r2

3
cos(θ),

2r2

3
sin(θ)

〉
¨
S

~F · d~S =

ˆ 2π

0

ˆ √3
0

−r2 sin(θ) +
2

9
r4 cos(θ) +

2

9
r4 sin(θ) cos(θ) dr dθ = 0

Solution 2: Solve using the Divergence Theorem. Note that div
(
~F
)

= 0. Let T be the solid

enclosed by y2 + z2 = 3x and x = 1; note that ∂T = S1 + S2, where S1 is the surface we are
interested in.

Using the Divergence Theorem,

¨
S1

~F · d~S +

¨
S2

~F · d~S =

˚
T

div
(
~F
)
dV = 0

Therefore, the flux through S1 is opposite the flux through S2. Parametrizing S2:

~r (r, θ) = 〈1, r cos(θ), r sin(θ)〉 ~rr × ~rθ = 〈r, 0, 0〉 r ∈ [0,
√

3], θ ∈ [0, 2π]

¨
S1

~F · d~S = −
¨
S2

~F · d~S = −
ˆ 2π

0

ˆ √3
0

r2 sin(θ) dr dθ = 0

18
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4. Find the circulation of ~F (x, y, z) = 〈y2,−y, 3z2〉 through the ellipse formed from 2x+ 6y − 3z = 6
intersecting x2 + y2 = 1, oriented counterclockwise as viewed from above.

D

2x + 6y − z = 6

z

S C

x

y

Parametrize the surface of the intersection ( the surface of the plane z =
2

3
x+ 2y− 2 inside the

ellipse) with an upwards orientation:

~G (r, θ) =

〈
r cos(θ), r sin(θ),

2

3
r cos(θ) + 2r sin(θ)− 2

〉
~Gr × ~Gθ =

〈
−2r

3
,−2r, r

〉
Using Stokes’ Theorem,

ˆ
∂S

~F · d~r =

¨
S

curl
(
~F
)
· d~S =

¨
S
〈0, 0,−2y〉 · d~S

=

ˆ 2π

0

ˆ 1

0

−2r2 sin(θ) dr dθ = 0

5. Find the flux of ~F (x, y, z) = 〈x2y, xy2, 2xyz〉 outward through the surface of solid bounded by the
paraboloid z = x2 + y2 and the plane z = 4.

x y
(0, 0, 0)

(0, 0, 4)

z = x2 + y2

z

Note that the surface is closed. Using the Divergence Theorem,

¨
S

~F · d~S =

˚
T

div
(
~F
)
dV =

˚
T

6xy dV

=

ˆ 2π

0

ˆ 2

0

ˆ 4

r2
6r2 cos(θ) sin(θ) r dz dr dθ = 0
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